B.E.Eighth Semester (Mechanical Engineering) (Old)

Automation in Production

P. Pages: 2

Time: Three Hours

NKT/KS/17/1922

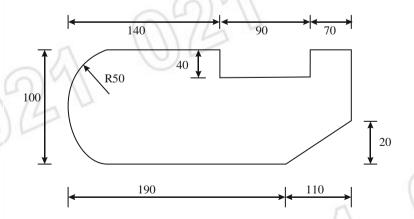
Max. Marks: 80

7

6

7

Notes: 1. All questions carry equal marks as indicated.


- 2. Answer **three** questions from Section A and **three** questions from Section B.
- 3. Due credit will be given to neatness and adequate dimensions.
- 4. Assume suitable data wherever necessary.
- 5. Illustrate your answers wherever necessary with the help of neat sketches.

SECTION - A

- 1. a) Define Automation in production and explain various automation strategies.
 - An 8 station automatic assembly has an ideal cycle time of 40 sec. Thee average downtime per occurrence is 4 men The fraction defect rate is 1% and the probability that the defective part Jam at given station is 0.7 for all stations. The cost to operate the assembly machine is Rs. 800/- per hours and cost of components being assembled is Rs. 200/- per unit. Ignoring other cost.

Determine:

- i) Yield of good assemblies
- ii) Average production rate of good assemblies.
- iii) What proportion of assemblies will have at least one defective component?
- iv) Determine the unit cost of assembled product.
- **2.** a) Explain different methods of workpart transport for transfer line. Describe their suitability to different manufacturing situation.
 - b) Explain upper bound approach and lower bound approach for the analysis of transfer line.
- 3. a) What is N.C. "What are its various components. Also explain how it differs from DNC.
 - b) Write an APT program for the following component, if two cuts (rough & finish) are required. Cutter size 25 mm, finish allowance 4 mm, thickness of part 20 mm, speed 1000 rpm, feed 120 mm/min, inside Tol = 0.025 mm no outside tolerance.

- **4.** a) Explain with neat sketch various robotic configuration.
 - b) Explain with neat sketch various robots joints.

8

5

NKT/KS/17/1922 1 P.T.O

		c)	Work volume	
		d)	End effector	
		e)	Sensors in Robot	
			SECTION - B	
6.	a)	Wh	at is AGVS. Explain various applications of the same.	6
	b)	Ave Ave Pick Dro Trat Calc i)	as follows. nicle speed = 60 m/min erage loaded travel distance per delivery = 180 m erage empty travel distance per delivery = 120 m k up time = 0.60 min ep off time = 0.60 min ffic factor = 0.80 culate: No. of vehicles required to satisfy delivery demand Handling system efficiency	7
7.	a)	Def	ine AS/RS. Explain its basic components and special features.	6
	b)	the	nechanized storage carousel has a length of 12 m and width of 1.5 m. The velocity of carousel is 20 m/men. and the part handling time at the unload station is 50 sec. ermine the average time to retrieve a part from the system. Assuming that the system revolves in single direction. Assuming that it revolves in both directions.	7
8.	a)	Wh	at is CMM. What are its types explain with neat sketch any three.	6
	b)	Exp	plain with neat sketch machine vision system.	7
9.	a)	Wh	at is FMS. Explain with neat sketch various FMS layout.	7
	b)	Wh	at is Group Technology. Explain production flow Analysis (PFA).	6
10.		Wri	te short notes on any three.	1
	~	a)	Composite Part concept in G.T.	
6	1	b)	Opitz classification & coding.	
4/	L'	c)	Variant CAPP	
) [d)	Shop floor control.	
N	KT/KS	S/1 7 /2	**************************************	

Write short notes on any three.

DNC & CNC

Adaptive control

a)

b)